MecE 360: Mechanical Design II

Winter 2012 – Jan 9 to April 13

Instructor: Jason Carey, Mec Eng 5-8T, 492-7168
Open door policy & scheduled group meetings

Class time: T R 9:30AM - 10:50AM ETLE1 013

<table>
<thead>
<tr>
<th>Lab H1</th>
<th>T</th>
<th>1400-1520</th>
<th>MecE 2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab H2</td>
<td>R</td>
<td>1400-1520</td>
<td>MecE 2-1</td>
</tr>
</tbody>
</table>

Jason.carey@ualberta.ca and Skype contact (email to request meeting) jcarey.ualberta.ca

Prerequisite: MecE 260, MecE 265, MatE 202 and CivE 270. It is up to you to check if you have the prerequisite. **If you do not have the prerequisites, withdraw from MecE360. No exemptions can be given.**

Distribution of marks:

<table>
<thead>
<tr>
<th>Due/Scheduled</th>
<th>worth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group assignments TBD in class</td>
<td>5%</td>
</tr>
<tr>
<td>Quiz (best 1 out of 2) Thursday Jan 26</td>
<td>10%</td>
</tr>
<tr>
<td>Group Project April 13 Thursday March 15</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm exam Thursday Feb 16 15%</td>
<td></td>
</tr>
<tr>
<td>Final exam* 9am Friday April 20 50%</td>
<td></td>
</tr>
</tbody>
</table>

* It is necessary to pass the final exam to pass the course.

Compulsory notes:

Course notes available at MecE club

Suggested Text:

U of A online books (Knovel):

Machinery’s handbook, Oberg, 27th edition
Peterson’s stress concentration factors
Mark’s mechanical Engineering Handbook

Reference texts:

- FAG bearing is providing each student a 1500 page volume of their catalogue which contains advanced bearing theory.

Website:
The course website (Eclass) will contain additional information, documents, solutions (a bunch of useful stuff!).

University Policies

Policy about course outlines can be found in §23.4(2) of the University Calendar.
The University of Alberta is committed to the highest standards of academic integrity and honesty. Students are expected to be familiar with these standards regarding academic honesty and to uphold the policies of the University in this respect. Students are particularly urged to familiarize themselves with the provisions of the Code of Student Behavior (online at www.ualberta.ca/secretariat/appeals.htm) and avoid any behavior which could potentially result in suspicions of cheating, plagiarism, misrepresentation of facts and/or participation in an offence. Academic dishonesty is a serious offence and can result in suspension or expulsion from the University.
MecE 360: Mechanical Design II

Detail topics

1. Introduction

Unit 1: Introduction to the design process

2. Design process:
 - Brainstorming
 - Decision matrices
 - Gantt Chart
 - Initial considerations
 - Uncertainties

Unit 2: Initial considerations to design

3. Initial consideration: Material selection
 - Initial consideration
 - Restrictions and assumptions
 - Decision matrix for materials
 - Ashby charts introduction
 - Basic manufacturing considerations

4. Initial consideration: Loading conditions, stress and deflection analysis
 - Loading
 - Shock, impact, suddenly applied loads
 - Fatigue (definition)
 - SCF
 - Deflection analysis
 - Residual stresses

5. Initial consideration: Design criteria
 - Static failure
 - Maximum Normal Stress
 - Modified Mohr
 - Maximum shear stress
 - Von-Mises Yield Criteria
 - Fatigue Failure
 - Low cycle fatigue
 - High cycle fatigue
 - Stress concentration factors

Unit 3: Component design and selection

6. Components: Shafts
 - General concepts
 - Loads
 - Power transmission
 - Sizing based on strength
 - Sizing based on deflection
 - Natural frequency
 - Keys and coupling
7. Components: Gears
- General consideration
- Design consideration
- Lewis equations
- AGMA equations
- Spur, bevel, helical, worm gears

8. Components: Bearings and lubrication
- Journal bearings
- Rolling contact bearing

9. Components: Connections
- Non-permanent joints
 - Screws
 - Bolts
- Permanent joints
 - Welds
 - Adhesives

10. other components (time permitting)
- Spring
- Clutch/brakes
- Chains/belts
- Cams
Global objective of the course:
The objective of MecE 360 is to build on the static analysis of CivE 270 and the design work of MecE 260 and introduce students to the concepts of designing components and assemblies while considering more advanced notions such as materials, fatigue loading and stress concentrations.

Homework:
Unless specified otherwise, you must work in teams of three or four on the homework, handing in one team solution per assignment. These are the same groups as for the project. Assignments must be submitted in the drop box 4th floor of MecE by noon on the due date. Late homework will not be accepted.

Tests. There will be two 45-minute in-class quizzes, one midterm and a final exam during the semester. All tests are open book unless otherwise specified by the instructor. The lowest QUIZ will not count.

Make up tests. No make up tests/quizzes will be given. Students with a certified medical excuse or prior instructor approval will not be penalized. The grade will be added to the value of the final exam.

Group project. The projects will be a single design done by the assignment team and are due at the end of term submitted online. A report detailing the design process, analysis and engineering drawings acceptable for immediate production are required.

Assignments, quizzes and midterm grading. The responsibility of grading assignments, quizzes and midterm fall on the TA. If you believe an error has been made in grading or that you should have gotten more points than you got, write a statement making your case and take it to the TA. The TA will reevaluate the entire paper. Your grade might increase or decrease. If you are not satisfied with the TA’s decision, bring the written statement to the instructor who will make the final decision.

Cell phones. Turn them off.
MecE 360: Team policies and Expectations

Setup and email groups of 4 to jason.carey@ualberta.ca by date given in project package with selected group project (First come first serve)

Your team will have a number of responsibilities as it completes problem and project assignments; these are not mandatory only suggestions; groups may have differing dynamics -

- **Designate a coordinator, recorder and checker for each assignment.** Rotate these roles for every assignment.
- **Agree on a common meeting time and what each member should have done before the meeting** (readings, taking the first cut at some or all of the assigned work, etc.)
- **It is strongly suggested that all group members do all of the assignment questions, compare and discuss answers, and submit a single sheet per group.**
- **Do the required individual preparation.**
- **Coordinator checks with other team members before the meeting to remind them of when and where they will meet and what they are supposed to do.**
- **Meet and work. Coordinator** keeps everyone on task and makes sure everyone is involved, recorder prepares final solution to be turned in, **monitor** checks to makes sure everyone understands both the solution and the strategy used to get it, and **checker** double-checks it before it is handed in. Agree on next meeting time and roles for next assignment. For teams of three, the same person should cover the monitor and checker roles.
- **Checker turns in the assignment, with the names on it of every team member who participated actively in completing it.** If the checker anticipates a problem getting to class on time on the due date of the assignment, it is his/her responsibility to make sure someone turns it in.
- **Review returned assignments.** Make sure everyone understands why points were lost and how to correct errors.
- **Consult with your instructor if a conflict arises that can't be worked through by the team.**

If a team member refuses to cooperate on an assignment, his/her name should not be included on the completed work. If the non-cooperation continues, the team should meet with the instructor so that the problem can be resolved, if possible. If no resolution is achieved, the cooperating team members may notify the uncooperative member in writing that he/she is in danger of being fired, sending a copy of the memo to the instructor. If there is no subsequent improvement, they should notify the individual in writing (copy to the instructor) that he/she is no longer with the team. The fired student should meet with his/her instructor to discuss options. Similarly, students who are consistently doing all the work for their team may issue a warning memo that they will quit unless they start getting cooperation, and a second memo quitting the team if the cooperation is not forthcoming. Students who get fired or quit must find a team of 3 willing to accept them as a member; otherwise they get zeroes for the remaining assignments.

As you will find out, group work isn't always easy. Team members sometimes cannot prepare for or attend group sessions because of other responsibilities, and conflicts often result from differing skill levels and work ethics. When teams work and communicate well, however, the benefits more than compensate for the difficulties. One way to improve the chances that a team will work well is to agree beforehand on what everyone on the team expects from everyone else.